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Review
Glossary

Brain reserve (BR): differences in brain size and other quantitative aspects of

the brain that explain differential susceptibility to functional impairment in the

presence of pathology or other neurological insult.

Cognitive reserve (CR): differences in cognitive processes as a function of

lifetime intellectual activities and other environmental factors that explain

differential susceptibility to functional impairment in the presence of pathology

or other neurological insult.

Neural reserve: one proposed neural basis of cognitive reserve that involves

cognitive networks used by unimpaired individuals. Individual differences in

network efficiency/capacity or the use of alternative strategies may provide

reserve against the impact of brain changes.

Efficiency: the degree to which a task-related brain network must become

activated in order to accomplish a given task.

Capacity: the degree to which a task-related brain network can be activated

maximally to keep performing a task even in the face of increasing demands.

Neural compensation: one proposed neural basis cognitive reserve involving

the utilization of alternative networks not typically used by healthy individuals

in order to maintain or improve cognitive performance.

Brain maintenance (BM): individual differences in susceptibility to pathology,

particularly in the context of aging; whereas reserve theories emphasize

compensatory mechanisms, maintenance theories emphasize neuroprotective

mechanisms.

Scaffolding theory of aging and cognition (STAC): scaffolding is the

recruitment of additional neural circuits or networks when the primary

networks have become inefficient or damaged due to age, pathology, or even
Cognitive reserve (CR) is a concept meant to account for
the frequent discrepancy between an individual’s mea-
sured level of brain pathology and her expected cogni-
tive performance. It is particularly important within the
context of aging and dementia, but has wider applica-
bility to all forms of brain damage. As such, it has
intimate links to related compensatory and neuropro-
tective concepts, as well as to the related notion of brain
reserve. In this article, we introduce the concept of
cognitive reserve and explicate its potential cognitive
and neural implementation. We conclude that cognitive
reserve is compatible and complementary with many
related concepts, but that each much draw sharper
conceptual boundaries in order to truly explain pre-
served cognitive function in the face of aging or brain
damage.

The reserve concept
CR (see Glossary) has been proposed to account for the
frequent discrepancy between a person’s underlying level
of brain pathology (or age-related changes) and the ob-
served functional and/or cognitive deficits that are
expected to result from that pathology [1,2]. There is
extensive epidemiological and experimental evidence for
the existence of such reserve: life exposures, such as edu-
cational and occupational attainment, and engagement in
leisure and social activities have each been associated with
decreased risk of developing dementia [3–6], more success-
ful aging [7], and reduced clinical changes in several other
conditions, including traumatic brain injuries [8], Parkin-
son’s disease (PD) [9], multiple sclerosis (MS) [10], and
HIV-related dementia [11] (Figure 1).

The status of CR as a concept has been debated vis-à-vis
other related concepts, such as brain reserve (BR) [12] and
more recently brain maintenance (BM) [13]. Several other
related concepts have also been proposed [14]. In this
review, we discuss recent work on these and related con-
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cepts, and attempt to delineate the subtle distinctions
between them. We argue that, although the concepts differ
in important respects, they are complementary as opposed
to competing.

Models of reserve
Below we outline some of the dominant theories of pre-
served cognitive function in the face of advanced age,
dementia, and/or brain damage. These theories focus ei-
ther on compensatory mechanisms (emphasizing adapta-
tions to diminished function or impaired brain structure),
neuroprotective mechanisms (emphasizing factors which
prevent diminished function and impaired structure), or
some combination of both. The main models we discuss are
BR, CR, BM, and neurocognitive scaffolding.
some normal task-related challenge. This process is in theory a general and

life-long property of the brain.

Compensation-related utilization of neural circuits hypothesis (CRUNCH): the

theory that, as a task becomes more difficult, a network will be recruited to an

increasing degree. At some point, increased difficulty overwhelms the network,

which ceases to function effectively.

Cognitive flexibility: the capacity to achieve best performance on a particular

task, given the range of ability currently supported by the brain’s underlying

neuroanatomical structure; transient fluctuations in function that do not result

in long-term structural or anatomical changes fall under this umbrella.

http://dx.doi.org/10.1016/j.tics.2013.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2013.08.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2013.08.012&domain=pdf
mailto:ys11@columbia.edu


AD neuropathology

Co
gn

i�
ve

 st
at

us

Person with
high reservePerson with

low re serve

Incident deme n�a

Change poin t

TRENDS in Cognitive Sciences 

Figure 1. Representation of how CR may mediate between AD pathology and its

clinical expression based on epidemiological and imaging studies. The x-axis

represents AD pathology, slowly increasing over time. The y-axis represents

cognitive function. We assume that AD pathology increases over time at the same

rate in two individuals with high and low reserve. The amount of pathology

needed before cognitive function is affected is greater with higher CR, leading to a

later change point [60,61]. It follows that more pathology will be needed for the

person with higher CR to meet clinical diagnostic criteria for AD, thus delaying the

onset of the disease. Also, at any level of cognitive performance, AD pathology will

be more severe in the individual with higher CR [27,62]. Once cognitive decline

begins, it is more rapid in the person with higher CR [61,63].
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Brain reserve

The notion of BR posits that differential susceptibility to
brain damage or pathology is a function of i) the extent of
the brain damage and ii) a purely quantitative measure of
brain reserve capacity (BRC) (such as the overall size of the
brain, the number of neurons, the number of synapses, etc.)
[12]. When pathology reduces BRC beyond a certain
threshold, functional decline occurs. This can explain
how pathology that is relatively equal between two people
can yield differing functional manifestations (e.g., two
people with equal levels of AD pathology, such as amyloid
or tau deposition, can perform vastly differently on cogni-
tive tests).

This conceptualization of BR can be considered a pas-
sive, threshold model, because once a certain ratio of
pathological quantity to brain quantity is reached, func-
tional impairment is inevitable. The general threshold
model can be applied to virtually any pathology the brain
may face. To take one example, a higher number of large
pyramidal neurons in the cortex has been suggested as one
potential quantitative measure that could predict differ-
ences in the rate of functional impairment given the same
amount of AD pathology [15]. Most other related studies of
BR typically use more generalized measures of BRC, such
as total intracranial volume. However, although associa-
tions between head size and resistance to dementia have
been found [16], often more sophisticated analyses that
control for genetic factors, such as the apolipoprotein E
(Apo-E) gene, have dampened this association [17]. More-
over, the link between head circumference and dementia is
often significant only towards the extremely low ranges of
the former [18].

More nuanced potential measures of BR are more feasi-
ble. For instance, imaging measures, such as diffusion
tensor imaging (DTI), provide a new quantitative measure
that can be used in the traditional threshold model (see,
e.g., [19,20]). Eventually, microstructural anatomical dif-
ferences in measures such as dendritic spine length, den-
dritic density, or synaptic proteins may be employed
[21,22]. Although in practice these measures are difficult
to obtain in humans, except in autopsy studies, their
homologues in animals can be examined using histology
and their effects on animal behavior can be observed [23].

Cognitive reserve

In contrast to BR, CR can be considered to be an ‘active’
model, in that the threshold for functional decline is not
fixed by quantitative brain measures, but can be altered
based on experience. Thus, individuals with the same
amount of BRC can have different levels of CR [1]. The
CR model posits that cognitive processes are crucial for
explaining the differences between someone who is func-
tionally impaired and someone who is not, despite equal
brain changes or pathology. These cognitive processes
consist of differences in cognitive efficiency, capacity, or
flexibility that are shaped by life experiences. Thus CR is
‘active’ in two senses: i) it relies on current neural activity
to explain functional differences much more heavily than
BR and ii) it suggests that current neural activity is shaped
by disparate cognitive exposures/activities throughout the
lifespan.

CR is often estimated using proxy variables for lifetime
exposures and cognitive activity: years of education, mea-
sures of crystallized intelligence, such as vocabulary or
knowledge, literacy level, number of intellectually stimu-
lating leisure activities, degree of occupational complexity,
and socioeconomic status are all commonly used to create
an estimate of CR [1]. There are important methodological
issues to consider in combining these CR proxies [24]. In
addition, an alternative CR measure has been proposed
that comprises the variance in cognitive performance not
explained by socio-demographic measures and measures of
brain pathology [25].

Recent evidence for the role of CR (as inferred via a
number of proxies) in modulating the cognitive effects of
pathology and normal aging is vast. Here, we provide a few
representative recent studies as examples. In one study,
the relationship between low plasma beta-amyloid (Ab)
and cognitive performance was modulated by CR: elders
with higher education showed a weaker association [26].
Similarly, higher education has been associated with di-
minished fludeoxyglucose positron emission tomography
(FDG-PET) activation in subjects positive for cerebrospinal
fluid Ab, suggesting a compensatory role for CR [27].
Beyond AD, higher education has been associated with
slower transition from mild cognitive impairment (MCI) to
dementia in PD [9]. Similarly, higher CR (as measured
using reading score on the WRAT-3) is protective against
cognitive decline in women following chemotherapy treat-
ment for breast cancer [28]. In the context of normal aging,
higher CR (measured with educational and occupational
history, as well as verbal IQ) was associated with lower
functional MRI activation in right inferior frontal cortex
during a working memory task (consistent with increased
network efficiency – see below), as well as with decreased
brain volumes in older adults with MCI and AD (consistent
503



Review Trends in Cognitive Sciences October 2013, Vol. 17, No. 10
with more preservation of function in the presence of brain
pathology) [29]. In the same vein, the strength of the blood
oxygen level-dependent (BOLD) signal in task-related
areas as-yet unaffected by AD pathology or gray matter
atrophy was found to be positively correlated with CR
proxies (again using occupational–educational history
and verbal IQ, plus a measure of leisure activities) in
MCI and AD subjects, but negatively in healthy subjects
[30]. These findings suggest that CR operates in a compen-
satory manner even before pathology begins to diminish
function in a particular area [30].

Because CR is a cognitive concept, it is important to
identify its neural implementation. Stern [31] posited two
neural mechanisms: neural reserve and neural compensa-
tion (Figure 2). Neural reserve addresses the cognitive
networks that have developed over the lifespan as a func-
tion of innate capacity and lifetime exposures. Someone
with higher neural reserve, may therefore have more effi-
cient cognitive networks (i.e., networks that need to acti-
vate to a smaller degree than a less efficient network in
order to perform the same task at a comparable level of
performance), higher capacity networks (i.e., ones that can
activate to a greater degree given increasing task difficul-
ty), or greater flexibility in network selection. Thus, neural
reserve encapsulates most of the differences observed
between healthy individuals on cognitive tasks and posits
that these differences may account for differential suscep-
tibility to brain changes or pathology. Interestingly, recent
theoretical models also equate higher intelligence to higher
neural efficiency [32]. The neural reserve concept is com-
patible with Fabiani’s view of normal healthy aging as the
continuation of processes that are already present earlier
in life and which continually sculpt and transform the
brain [33].
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Neural compensation refers to situations where pathol-
ogy (or age-related changes) afflicts primary task-related
networks and necessitates the use of additional, compen-
satory networks to accomplish the same task. Individuals
with higher levels of CR may be more capable of drawing on
alternative neural networks in the face of brain changes in
order to maintain function.

Although BR and CR began as very distinct concepts,
much recent work that demonstrates the plasticity of the
brain itself in response to experience suggests that the
boundaries between the two models should be softened. In
animal studies, voluntary aerobic exercise has been asso-
ciated with dramatic structural changes, including in-
creased neurogenesis in the dentate gyrus of the
hippocampus [34] and upregulation of brain-derived neu-
rotrophic factor (BDNF) [35]. Similarly, cognitive experi-
ences have been associated with similar brain changes
[22,36]. Furthermore, ‘cognitive’ training can result in focal
volume changes in areas relevant to task demand, which
suggests that both long-term intellectual stimulation, as
well as focused cognitive interventions can produce struc-
tural alterations [23,37] (Box 1).

These structural changes are not confined to animal
models. Many cross-sectional studies have also suggested
that volumetric changes occur in humans following years of
intellectual stimulation associated with higher education
[38], specialized occupation [39], literacy [40], and so on.
Caution is warranted against uncritically accepting this
conclusion, given the vague causal directionality of the
association between enriched experience and more intact
brain structure [22]. Nonetheless, prospective studies sup-
port this idea. Increased hippocampal size in humans
following a 6-month aerobic exercise intervention has been
reported [41]. Moreover, three months of training on
elated neural ac�vity
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e study [64] using this model in the context of a working memory task observed

is decreasing efficiency was mitigated by higher measured CR (path e), consistent

econd network expressed by older but not younger adults when efficiency was

tory network was associated with diminished task performance (path d), which

maintain it, albeit at a lower level. Higher measured CR moderated the detrimental

duals with higher CR may recruit additional networks not directly captured by task-



Box 1. Implications for intervention

Epidemiological data indicate that lifelong exposures are associated

with more successful aging [44,56,65]. However, the transition from

observation to intervention is not straightforward. It is unknown

whether short-term engagement in any set of activities is sufficient to

impart reserve; it is possible that reserve accrues only over long

periods of time. Also, although intervention strategies can be guided

by epidemiology, their optimal instantiation is not straightforward.

Aerobic exercise has well-documented benefits and has resulted in

improved performance on cognitive tests, especially in executive

function [66]. A recent meta-analysis of 29 studies concluded that

aerobic exercise is associated with improvements in various cognitive

domains, such as processing speed, executive function, memory, and

attention [67].

Cognitive or behavioral interventions have yielded more mixed

results. A large-scale study found some improvements on trained

domains, but no transfer of training across domains or improvement

in activities of daily living. Studies that have immersed subjects in

complex gameplay are also promising. Playing a complex role-

playing game was associated with improved performance on a wide

range of cognitive tasks [68] and playing the Space Fortress task with

emphasis-change training was associated with improved working

memory [69]. Although evidence of genuine transfer-of-training

effects remains slim and improvements in day-to-day cognitive

functions are elusive [70], one study found that training on a working

memory task generalized to improvements in measures of fluid

intelligence [71]. Moreover, speed of processing training has been

shown to lead to increased driving mobility for elder subjects [72].

Cognitive training has also been shown to induce structural

changes. Training on several cognitive domains improved white

matter (WM) microstructure in both younger and older healthy

subjects [73]. Intensive memory training resulted in changes to gray

matter volume and WM integrity in elders, and these increases

correlated with improved memory performance [74,75]. Changes in

the structural integrity of WM have been induced with cognitive and

visuomotor training [4,76], and video-game playing [77]. Other

studies of training on working memory [78], mirror-reading [53],

and Morse code [79] have also resulted in structural changes. Such

changes may happen very quickly, even after just two hours of

category learning [80] or spatial learning [81].

Although epidemiological data suggest that life exposures can

enhance reserve, the exact ‘recipe’ for intervention remains unknown.

The most meaningful endpoints for intervention in elders would be

slowed rate of age-related cognitive decline or reduced risk of

developing AD. Controlled studies that use such endpoints will

undoubtedly be very expensive and will have to be conducted over

long periods of time. Most likely, these studies should use multiple

intervention strategies including exercise, cognitive stimulation, and

social stimulation.
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juggling skills was associated with increases in left intra-
parietal sulcus and mid-temporal cortical grey matter [42].
Similarly, learning the layout of London was associated
with gray matter increases in trainee taxi drivers, specifi-
cally in the hippocampus [43]. There are even suggestions
that higher CR may be associated with reduced patholo-
gies, such as reduced rate of hippocampal reduction in
aging [44] and lower Ab deposition [45]. The latter obser-
vations suggest strongly that such exposures associated
with CR may not only help the brain adapt to structural
changes, but it may also help prevent those changes to
begin with.

Brain maintenance

Similar to BR models is the notion of BM [13]. Rather than
addressing differential susceptibility to impairment given
equal levels of pathology, maintenance models instead ask
which factors may protect against pathology or age-related
changes, and posit that there are certain genetic factors
and favorable life experiences that imbue people with a
capacity to resist undergoing these changes. It is an open
question whether BM models could be extended to predict
that certain individuals are better than others at resisting
not only the advent of pathological processes, but also
resisting the harmful biological effects of the normal aging
process itself. Disentangling the effects of CR and BM on
levels of functional impairment is difficult due to practical
challenges in identifying and measuring brain changes
associated with aging or disease processes. In addition,
this approach does not explain variability of functioning in
the face of identified brain pathologies such as stroke, AD,
MS or white matter hyperintensities, nor does it account
for recent empirical observations that much age-related
cognitive decline is unaccounted for by common neuro-
pathologies [46]. Moreover, there is direct evidence that
CR proxies can operate in a compensatory way and not in a
neuroprotective way as BM predicts. For instance, Brayne
et al. [47] found that years of education were not associated
with neurodegeneration or vascular pathology themselves,
but they did moderate the effects of such pathologies on
clinical expression. Nonetheless, more direct studies are
needed to disentangle the effects of BM from those of
reserve theories.

The BM account has intimate links with research into
neuroplasticity in animal models, but these two research
strands are starkly different in that, whereas one looks
explicitly at which factors are associated with the absence
of any structural changes, the other looks at which factors
facilitate either i) beneficial structural changes (e.g.,
[42,48]), or ii) compensatory functional responses, given
harmful structural changes (e.g., [49]). The neural reserve
and neural compensation implementations of CR are high-
ly related to more recent notions of compensation emerging
from the neuroplasticity literature conducted largely with
animal studies, but also from observations in human sub-
jects (e.g. [50]; Box 2).

Bridging cognitive reserve and brain reserve

Another approach taken in a review by Lövdén et al. [51]
creates a bridge between CR and BR. It suggests that
people use knowledge-based strategies (which can be con-
sidered to be within their current range of cognitive flexi-
bility) to perform tasks, but when faced with a prolonged
mismatch between functional supply and challenge (of
either the intrinsic or extrinsic nature), the brain itself
must exhibit plastic and compensatory alterations that
may result in a mechanism akin to neural compensation.
When the brain is confronted by a challenge it relies on
compensatory network activations to maintain perfor-
mance; and although these compensatory networks could
be less efficient at performing a given task than the pri-
mary networks used, without the additional activation
performance would be severely impaired. Eventually,
these challenges prompt changes in the brain itself, which
Lövdén et al. define as true plasticity. When this happens,
it seems plausible that more ‘process-based’ rather than
505



Box 2. Using imaging to explore the neural basis of cognitive reserve

Functional imaging has strengths and weaknesses for evaluating the

neural basis of CR. It is not ideal for identifying networks that underlie

alternate problem-solution strategies because imaging analyses are

more attuned to common rather than different patterns of activation

within a group of people. However, functional imaging can be used to

probe individual differences in task-related activation as a function of

task performance and CR proxies. Consideration of the degree of

pathology aids in exploring how some individuals cope with

pathology better than others [82].

Neural reserve would predict that individuals with and without a

given pathology use the same brain networks, albeit with differing

efficiency or capacity. It is important to consider that task-related

activation can increase with task difficulty. Because aging or brain

changes increase subjective task difficulty and reduce brain-network

efficiency, it is common to observe greater task-related activation in

more affected than less affected individuals [29]. However, at higher

levels of task demand, there can be greater activation in more intact

individuals, because of greater network capacity [58]. Controlling for

subjective task demand can produce equivalent levels of task-related

activation in young and old individuals [83]. The compensation-

related utilization of neural network hypothesis (CRUNCH) [50]

encompasses these findings, with the additional observation that

activation in more affected individuals might actually decline in

response to increased task difficulty, perhaps reflecting overwhelm-

ing of their networks’ capacity. Because young and old use the same

networks in this scheme, Stern [2] would not invoke the concept of

compensation here.

Neural compensation would be invoked when the affected

individuals engage networks not typically used by unaffected

individuals. Generic models for compensation in aging include PASA

[84] and HAROLD [85]. These models assume that compensatory

activation is associated with better performance, with some support

[86]. The actual implementation of compensation will depend closely

on the networks that underlie the functions in question, and possible

supporting networks. Studies have also demonstrated compensatory

activation that is not associated with better performance [54,64]. In

this case, the use of an alternate network may maintain as opposed to

improve performance. There is also the possibility of a ‘generic’ CR

network that supports multiple functions [87].

These observations of functional activation patterns consistent with

neural reserve and neural compensation can be tied to the CR model

when it can be shown that in the face of a comparable amount of

brain pathology individuals expected to have higher CR can maintain

greater network efficiency or capacity, can compensate in an

advantageous way, or can avoid resorting to a less advantageous

alternate networks.
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knowledge-based mechanisms (i.e., compensatory mecha-
nisms based on implicit improvements in abilities such as
working memory rather than ones based on using explicit
strategies such as mnemonics) begin to underlie perfor-
mance differences. Indeed, Shing et al. [52] demonstrated
that some cognitive domains (such as episodic memory) can
be broken down into strategic and process-based compo-
nents (Box 3).

The scaffolding theory of aging and cognition (STAC)

Similar to Lövdén et al. [51], Park and Reuter-Lorenz [14]
reason that compensatory mechanisms reflect a general
feature of the brain that they call scaffolding: the ability to
adapt to structural alterations (and task-induced function-
al limitations) by engaging in functional reorganization –
that is, developing and/or relying on compensatory net-
works when the primary networks are no longer efficient at
performing some task. This can happen either because
more specialized networks are recruited, which accomplish
the task better (an instance of scaffolding that happens
Box 3. Cognitive manifestations of CR

Despite the overwhelming emphasis on the neural underpinnings

of reserve, Lövdé n et al.’s [51] conceptual work on cognitive

flexibility as a counterpart to neural plasticity should remind us

that there is a purely behavioral dimension to CR that is based

solely on cognitive networks – that is, acquired knowledge or

‘representations’ that do not reflect structural differences beyond

synaptic connectivity.

These behavioral manifestations of CR may be reflected, for

instance, in an increased ability to select and employ the best

strategy for performing a task. Barulli et al. [57] report that higher CR

(operationalized using verbal IQ and years of education) in healthy

adults is associated with better strategy selection abilities in a

computational estimation task: older adults with higher verbal IQs

employed the best strategy more often than those with lower verbal

IQ, an effect not observed in a young group. This finding suggests

that it is not overall cognitive ability which determines strategy

selection, but CR based on a lifetime of acquired knowledge.

Other more specific cognitive domains – particularly memory,

where mnemonic strategies would be very effective [88,89] – may
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during learning) or because the primary networks are
being subjected to damage of any kind that renders them
suboptimal (an instance of scaffolding that happens with
age-related deterioration). Thus, age-related brain
changes would be met with functional adaptations in
affected areas and those downstream in order to minimize
the cognitive impact of the brain changes. Such a compen-
satory mechanistic interpretation is consistent with much
empirical data (e.g., [53]). This observation is comparable
to that in neural reserve and compensation, which encom-
pass similar mechanisms, including ‘compensatory’ net-
works that are associated with poorer performance [54].

Proponents of STAC suggest that it differs from CR in
that it applies not only to aging, but also to the brain’s
response to other pathologies or afflictions throughout the
lifespan, as well as to normal task-related challenges, such
as learning a new skill. [14] However, this overlooks the
fact that CR is built up over a lifetime of experiences [55]
and has been associated with reduced susceptibility to
many forms of brain damage across the lifespan [56]. CR
also be useful for evaluating the cognitive implementation of reserve.

Woods et al. [90] report that in a sample of HIV-infected participants

mnemonic strategy use was associated with higher verbal IQ and

moderated the effects of the disease on visual working memory.

There is also a growing body of evidence to suggest that higher CR is

associated with better use of compensatory strategies. For example,

Czernochowski et al. [91] found that higher-socioeconomic status

(SES) older adults had access to compensatory mnemonic strategies

that lower-SES elders did not. Boyle et al. [92] reported that poor

decision-making was associated with a fourfold increased risk of

mortality in a sample of 675 older adults, even after controlling for

other cognitive domains. Whether improved strategy selection or

decision-making abilities are an instantiation of CR or a basis for it is

an open question.

Although very preliminary, these results suggest one largely

unexplored path to studying the cognitive mechanisms of CR and

related concepts. Identifying the particular cognitive strategies or

compensatory mechanisms may help to identify the underlying

neural mechanisms, as well as point towards effective interventions.
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has also been used to predict discrepancies in performance
in the case of normal aging (e.g., [57]), as well as differences
in performance and functional MRI activation resulting
from differences in task difficulty (e.g., [58]). Moreover, in a
longitudinally-followed sample of young people, low child-
hood IQ was found to be predictive of increased risk for
psychiatric disorders, such as depression, schizophrenia,
and anxiety in young adulthood [59]. This suggests that CR
may be important throughout the lifespan for resisting not
only cognitive decline, but psychiatric afflictions, as well.
Thus, CR is a model with wide applicability across the
lifespan and across a range of brain challenges, but despite
its generality it can also account for qualitative shifts that
occur in compensatory behavior (e.g., shifts in functional
activation upon diagnosis, dramatic shifts in the rate of
cognitive decline, etc.) in a way that a more generalized
theory such as scaffolding cannot.

Concluding remarks
In this review, we attempted to clarify some of the concep-
tual relationships between CR and closely related models.
As imaging methods become more advanced and macro-
structural changes reveal their microstructural correlates,
BR and CR may grow more interconnected. Much more
fine-grained brain measures are necessary than the stan-
dard proxies for BR, such as brain size, and CR can point
towards which of these more subtle measures are relevant.
BM theories, meanwhile, are complementary to CR, but it
is not clear to what extent they can account for age-related
variability in cognitive performance, given their inability
to explain compensatory mechanisms. Even with normal
aging, some degree of structural change seems to be inevi-
table; therefore, these changes present a challenge with
which the healthy ager needs to cope. Finally, scaffolding
and related theories are also compatible with CR and, we
Box 4. Outstanding questions

� What are the neural mechanisms by which CR operates? To what

extent are they captured by the neural reserve and neural

compensation hypotheses?

� Could there be a general ‘CR network’ – that is, a network

developed over a lifetime of cognitive stimulation that is active

and playing a compensatory role across very disparate tasks?

� How do CR and BR interact? When and how is cognitive

experience converted to structural change?

� Can life experiences foster BM? Would this apply only to normal

aging or to disease pathologies, such as plaques and tangles?

� Can experiences be provided that impart CR?

� To what extent is CR based on acquired knowledge (analogous to

crystallized intelligence) versus cognitive processes (analogous to

fluid intelligence)?

� What role do genetic factors play in CR and BR? Do genetic factors

merely set the initial limits for cognitive flexibility or could they

also set limits for neuroplastic structural changes?

� Might CR be easier to build at younger ages, consistent with the

observation in animal studies of ‘critical periods’ [93,94], during

which certain neuroplastic changes are more likely?

� How much normal age-related cognitive variance is accounted for

by BM theories and CR theories, respectively? Is this question

possible to answer without a clearer conceptual distinction

between what constitutes normal aging and what constitutes

pathology?
have suggested, propose many similar overarching princi-
ples and mechanisms. The challenge for all theories now is
to specify the underlying neural and cognitive mechanisms
that mediate the relationship between brain challenge and
cognitive performance (Box 4).
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